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Abstract In a series of recent papers Padmanabhan et al. derived Einstein equations for
gravity by introducing an entropy functional for space-time viewed as an elastic medium.
They showed that the same entropy functional applied to the thermodynamics of horizons
yields an entropy that is always proportional to the area of the horizon. Following the same
philosophy as theirs we first note that it may be arrived at Einstein equations, with a cosmo-
logical constant as an integration constant, using a slightly different route from theirs that
also results in the same final expression for the entropy functional. We generalize the fun-
damental equations of three-dimensional elasticity to four dimensions and propose that the
elastic deformation of space-time be constrained by those equations. A general Lagrangian
describing the elastic deformation of space-time is deduced. When applied to the special
case of a Schwarzschild black hole, viewed as an infinite line defect in space-time, the ap-
proach developed here permits to recover the black hole’s mass from the elastic deformation
it caused to space-time, to reproduce the Hawking temperature, and to yield an entropy that
is also in agreement with the Bekenstein-Hawking formula.

Keywords Elastic space-time · Einstein equations · Bekenstein-Hawking entropy formula

1 Introduction

The idea of identifying space-time with an elastic medium goes back to A.D. Sakharov who
proposed in 1968 that space-time is the coarse grained limit of some microscopic substruc-
ture and that general relativity is just a macroscopic approximation to a microscopic theory
of the dynamics of space-time (he calls it the “metric elasticity of space”) just as elasticity is
to chemical physics [1]. According to this idea it is then interesting to try to extend the clas-
sical three-dimensional theory of elasticity to four dimensions and compare the dynamics of
the four-dimensional elastic medium it describes to the dynamics of space-time described
by Einstein equations. By applying the methods of elasticity theory and adapting some of its
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concepts to space-time, one hopes to bring new light to some of the results of general rela-
tivity and propose new interpretations to some of its extensions. This approach, carried out
recently by several authors has led, among other things, to the study of dislocation-like solu-
tions to Einstein equations and their relation to cosmic strings [2–4], the study of the motion
of photons around space-time dislocations [5, 6], an interpretation of Einstein-Cartan theory
in terms of defects in space-time [7], and more remarkably a proposal to explain inflation
in terms of a spherical defect in space-time [8–10]. Other authors have also explored the
other way around, that is to apply the concepts of general relativity to the physics of solid
mediums [11, 12].

An other axis of research combining concepts from solid state physics and the physics
of space-time consists of investigating the link between the fundamental concepts of the
theory of elastic mediums and the fundamental equations of the dynamics of space-time.
Such a link would show that Einstein equations may really be derived from investigating the
assumption that space-time is an elastic medium.

Work in this direction has also been conducted by various authors, to cite but a few, see
e.g. [13–16]. In [13], Einstein equations were arrived at by investigating the dynamics of
a thin and strained four-dimensional elastic plate identified with space-time by introduc-
ing extra-dimensions into which the plate bends. In [14], sticking to four dimensions, the
author showed by introducing an entropy functional that Einstein equations are sufficient
constraints on the dynamics of space-time that allow the latter to be identified with a four-
dimensional elastic medium with an extremized entropy. In the same reference the author
showed that the same functional implies a proportionality of entropy to the area of any hori-
zon. In [15] and [16], the general case of D dimensions is considered and a novel approach
to the derivation of Einstein equations based on null vector fields can be found.

In this paper we shall follow closely the work in [14]. This paper is organized as follows.
In Sect. 2, after briefly reviewing how it is arrived at Einstein equations in [14], we show that
these equations may also be arrived at by following a slightly different route that produces
at once a cosmological constant as an integration constant and ending up with the same final
expression for the entropy functional as in [14]. In Sect. 3, we generalize the fundamental
equations of equilibrium of three-dimensional elasticity theory to four dimensions and give a
general Lagrangian to describe the elastic deformations of space-time. In Sect. 4, we explic-
itly evaluate the entropy of a Schwarzschild black hole by solving the generalized equations
of equilibrium of Sect. 3 then plugging the resulting solution in the entropy functional. In
Sect. 5, we apply the results of Sect. 4 to recover the mass of the Schwarzschild black hole
from the pure elastic deformation it caused to space-time. We conclude this paper with a
discussion on our various results.

2 Einstein Equations from an Entropy Functional Revisited

By identifying space-time with an elastic medium, our starting point to arrive at Einstein
equations will be, as in [14], the general form of the entropy of a four-dimensional elastic
medium. The fundamental variable in elasticity theory is usually taken to be the deformation
vector field [17] ui(x) = x̃i − xi , where i = 1, . . . ,3, and x̃i are coordinates labelling points
in the deformed medium while xi are coordinates labelling the same points in the medium
before deformation. Then, as it is explained in [14], to lowest order the entropy of the four-
dimensional elastic space-time should be a scalar quadratic both in the deformation vector
field ui and its first covariant derivatives ∇ iuj (i, j = 0, . . . ,3). The derivative terms are the
space-time contribution to entropy arising even in the absence of external sources, matter
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and energy. The non-derivative terms arise in the presence of these external sources repre-
senting defects in space-time that break translational invariance [15]. The author then took
for the entropy functional the following general form answering the above requirements,
S = (1/8π)

∫
d4x

√−g[Mijkl∇iuj∇kul + Niju
iuj ], where Mijkl and Nij are two tensors to

be determined. Varying S with respect to the deformation field ui , the author obtained the
following equations of motion ∇i (M

ijkl∇k)ul = Njlul . Then the author states that in the
case of elasticity theory one would have used such an equation to determine the deformation
field ui but for the case of space-time one requires any deformation ui to be allowed pro-
vided the background space-time satisfies Einstein equations. He then shows that the unique
choice Mijkl = gilgjk −gij gkl and Nij = 8π(Tij −gijT /2) really allows for the above equa-
tions of motion to be satisfied for any ui and giving at once Einstein equations. In [15] and
[16], this method is generalized to D dimensions and a different expression, with a differ-
ent motivation, for the tensor Mijkl is given. The entropy functional there is applied to null
hypersurfaces and the derivation of Einstein equations is based on null vector fields ui .

Here we adopt a different route by following different steps. We start with a different ex-
pression for the entropy functional and demand that the equations of motion that result from
its variation be satisfied for any ui without seeking the satisfaction of Einstein equations by
the background. The general form we take here for the functional representing entropy is

S =
∫

d4x
√−g[α(∇iuj )(∇j ui)+β(∇iuj )(∇ iuj )+γ (∇iu

i)2 +λgiju
iuj +Tiju

iuj ], (1)

where α, β , γ , λ, and Tij are, respectively, four scalars and a symmetric tensor, to be deter-
mined.

Since Tij goes with the factor coming from the contributions of matter and energy, it is
natural to identify this tensor with the symmetric energy-momentum tensor associated with
matter and energy. On the other hand, the variation of (1) with respect to the deformation
vector field ui gives

∇jα∇iu
j + ∇jβ∇jui + ∇iγ∇j u

j + α∇j∇iu
j + β∇2ui

+ γ∇i∇j u
j − (λgij + Tij )u

j = 0. (2)

The only way to have (2) satisfied for any ui without all vanishing scalars α, β , and γ , is to
set β = 0, whilst γ = −α = const., so that α∇j∇iu

j + γ∇i∇ju
j gives the linear combina-

tion αRiju
j . Rij being the Ricci tensor.

With these constraints (2) becomes

(αRij − λgij − Tij )u
j = 0, (3)

which, in turn, may be satisfied for any uj if and only if

αRij = Tij + λgij . (4)

Taking the divergence of the two sides gives

1

2
α∇iR = ∇iλ. (5)

Solving this equation for λ we get λ = (1/2)αR − Λ, for some constant of integration Λ.
Substituting λ back into (4) yields

α

(

Rij − 1

2
gijR

)

+ Λgij = Tij . (6)
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By choosing α = 1/8πG in order to recover the Newtonian limit, we recognize Einstein
equations—our constant of integration Λ playing the role of a cosmological constant.

Taking into account the different constraints on the four scalars α, β , γ , and λ that ap-
peared in the general form we chose for the entropy functional in the preceding section, this
latter reads

S =
∫

d4x
√−g

[

α(∇iuj∇j ui − (∇iu
i)2) +

(

Tij − 1

2
gijT + Λgij

)

uiuj

]

, (7)

where equation αR = 4Λ − T , that comes from the contraction of Einstein equations (6), is
used to eliminate R from the quadratic term in ui . Using Einstein equations (6) again and
integrating by parts [14], one finds (setting α = 1/8πG)

S = 1

8πG

∫

M
d4x

√−g∇i

(
uj∇ju

i − ui∇j u
j
)

= 1

8πG

∫

∂M
d3x

√|h|ni

(
uj∇j u

i − ui∇j u
j
)
, (8)

where h is the determinant of the three-dimensional metric corresponding to the hypersur-
face ∂M bounding the integration region M of space-time, and ni a unit vector normal to
that hypersurface. Using this last expression for the entropy functional, it was shown in [14]
that under certain assumptions about the field ui , the entropy always comes proportional
to the horizon of black holes. In Sect. 4 we shall use this form of the functional to inves-
tigate its consequences when applied to space-time with the additional constraint that the
deformation vector field ui satisfies a generalized version of the equations of equilibrium of
three-dimensional elasticity theory. That generalization is given in the next section.

3 Generalized Elasticity Equations for an Elastic Space-Time

Since we are literally taking space-time to be an elastic medium it is natural to investigate
its deformation using a generalization of the elasticity equations.

Recall that in three-dimensional elasticity theory [17] the equations of equilibrium are

∂jσ
ij + f i = 0, (9)

where σ ij is the stress tensor subject to the constraint

σ ij = σ ji, (10)

and f i is the total density of external forces and nonelastic forces inside the medium. These
equations express the fundamental principle of dynamics applied on the infinitesimal vol-
ume element at equilibrium, on which f i acts. The constraint on σ ij expresses the absence
of torques at equilibrium. These equations are written in what is called the stress formu-
lation. One goes to what is called the strain formulation by using Hooke’s law for elastic
mediums relating the stress tensor to the strain tensor defined by εij = (∂iuj + ∂jui)/2. For
isotropic mediums Hooke’s law has the following form σij = μδij ε

k
k + νεij , where summa-

tion on repeated indices is understood and, μ and ν called the Lamé coefficients, are positive
constants in the case of a homogeneous medium characterizing the elastic properties of this
latter. In terms of the field ui , the three-dimensional Hooke’s law then writes

σij = μδij ∂ku
k + ν(∂iuj + ∂jui)/2. (11)
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Taking space-time to be an isotropic and homogeneous elastic medium we write a four-
dimensional generalization of the above three-dimensional Hooke’s law in the form σ ij =
μgij∇ku

k + ν∇ iuj + ρ∇jui , where now i, j = 0, . . . ,3 and μ, ν and ρ are three positive
constants that would characterize the four-dimensional isotropic and homogeneous elastic
space-time. On generalizing the three-dimensional constraint (10), however, we learn that
we must have ρ = ν and the four-dimensional Hooke’s law takes the following form

σ ij = μgij∇ku
k + ν(∇ iuj + ∇j ui). (12)

Next, the generalization to space-time of the equation of equilibrium (9) takes, in the absence
of nonelastic and exterior forces, the following general covariant form ∇j σ

ij = 0. Using
(12), this writes in terms of the vector field ui as

μ∇ i∇ku
k + ν(∇k∇ iuk + ∇k∇kui) = 0. (13)

Finally, since the elastic medium we take space-time to be is not embedded in a higher
dimensional manyfold as it is done in the approach of [13], we must impose an additional
condition expressing the absence of rigid rotations. In three-dimensional elasticity theory
this is done by setting to zero the tensor of local rotations [18] ωij = (∂iuj − ∂jui)/2. We
transcribe this condition to space-time with the following general covariant equation

∇ iuj − ∇j ui = 0. (14)

The Combination of (13) and (14) gives

∇i∇j u
j = − 2ν

μ + 2ν
Riju

j = −16πGν

μ + 2ν

(

Tij − 1

2
T gij + Λgij

)

uiuj . (15)

The second step comes from the use of Einstein equations (6). Note that the above equations
may be derived as equations of motion for the field ui using the following action

S =
∫

d4x L =
∫

d4x
√−g

[

(∇iu
i)2 − 16πGν

μ + 2ν

(

Tij − 1

2
T gij + Λgij

)

uiuj

]

. (16)

The second term inside the square brackets of the Lagrangian gives the coupling of the field
ui with the energy-momentum tensor of the sources and the cosmological constant. Such
a term would play a central role when investigating the deformation field of non-vacuum
solutions to Einstein equations such as the Reissner-Nordstøm black holes.

In the next section we shall apply the above generalized equations of equilibrium to
space-time in the presence of a black hole to check if our generalization of elasticity yields
a deformation of space-time, i.e. a field ui , that may reproduce familiar results from the
thermodynamics of black holes.

4 The Bekenstein-Hawking Entropy Formula

In what follows, we shall apply the final expression (8) of the entropy functional to evaluate
the entropy of a Schwarzschild black hole. For that purpose, we need both the metric and
the field ui . Recall that the Schwarzschild metric around a black hole of masse M reads [19]

ds2 = −
(

1 − 2GM

r

)

dt2 +
(

1 − 2GM

r

)−1

dr2 + r2 dΩ2, (17)
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where dΩ2 = dθ2 + sin2 θ dφ2. Thus it remains only to find the deformation four-vector
field ui .

In three-dimensional elasticity theory the deformation vector field ui is created either
from exterior constraints or from defects inside the medium. One then obtains the explicit
form of ui by solving the equations of equilibrium and taking into account the boundary
conditions specific to the problem [17].

Taking matter to be space-time defects is the soul idea behind our present study of space-
time using four-dimensional elasticity theory. In what follows we shall therefore take the
Schwarzschild black hole to be an infinite line defect, passing through the origin (at r = 0
in spherical coordinates) and parallel to the time direction, we then compute ui using the
generalized equations of elasticity of Sect. 3.

Now, from the spherical symmetry of the Schwarzschild black hole identified with a line
defect parallel to the time direction, it is natural to choose the following Ansatz to represent
the deformation vector field around that defect ui = (u0(r), u1(r),0,0). To get the exact
form of the r-dependence we require ui to satisfy outside the defect region (r = 0) both (13)
and (14) for i, j = 0, . . . ,3.

Using the non-vanishing components of the metric connection for Schwarzschild [19],

Γ 1
00 = GM

r2

(

1 − 2GM

r

)

, Γ 1
11 = − GM

r(r − 2GM)
, Γ 0

01 = GM

r(r − 2GM)
,

Γ 2
12 = 1

r
, Γ 1

22 = −r

(

1 − 2GM

r

)

, Γ 3
13 = 1

r
, (18)

Γ 1
33 = −r

(

1 − 2GM

r

)

sin2 θ, Γ 2
33 = − sin θ cos θ, Γ 3

23 = cos θ

sin θ
,

reveals after a straightforward calculation of the various covariant derivatives that for
i, j = 2,3 (13) and (14) are trivially satisfied. For i, j = 0,1, however, they give rise to
the following system of differential equations

μ

(

1 − 2GM

r

)(
d2u0

dr2
+ 2

r − 2GM

du0

dr

)

= 0,

(μ + 2ν)

(

1 − 2GM

r

)(
d2u1

dr2
+ 2

r

du1

dr
− 2

r2
u1

)

= 0, (19)

(

1 − 2GM

r

)(
du0

dr
+ 2GMu0

r2 − 2GMr

)

= 0,

to which the general solution for positive μ and ν and r �= 2GM is

u0 = Br

r − 2GM
, u1 = C

r2
+ Dr. (20)

B , C, and D are three constants of integration.
Demanding a deformation vector field that is bounded at infinity, we set D equal to zero.

On the other hand, since this field is time independent we may absorb the constant B and
set it equal to one in the time component of the field ui by making a global rescaling of
the field together with a redefinition of the time coordinate dt → B−1 dt in the infinite time
integral of (8). Hence, we rewrite the final solution for the field ui to be used in integral (8)
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as follows

u0 = r

r − 2GM
, u1 = C ′

r2
, u2 = 0, u3 = 0. (21)

We see that the field ui is defined everywhere except at r = 0 and r = 2GM where it presents
two singularities. The event horizon is a time-like singularity while at the origin we have a
space-like singularity.

Now back to integral (8). Although the integral decomposes into four parts

S = − 1

8πG

∫
dr dθ dφ r2 sin θ

(
ui∇iu

0 − u0∇iu
i
)

+ 1

8πG

∫
dt dθ dφ r2 sin θ

(
ui∇iu

1 − u1∇iu
i
)

+ 1

8πG

∫
dt dr dφ r2 sin θ

(
ui∇iu

2 − u2∇iu
i
)

+ 1

8πG

∫
dt dr dθ r2 sin θ

(
ui∇iu

3 − u3∇iu
i
)
, (22)

where use of the metric (17) has been made, only the second integral survives when we plug-
in the solution (21) for ui . Indeed, the integrands in the last two integrals vanish trivially
because of the general form (u0(r), u1(r),0,0) of the field ui while the integrand in the
first integral vanishes only because of the precise form of the solution (21). We are then
left with the second integral which is an integral over the hypersurface normal to the radial
direction and bounding the whole region 0 ≤ r < ∞ of space-time. To perform the infinite
time integral we make an analytic continuation and use the Euclideanized time τ = it which
is related to the temperature T of the corresponding thermal system by τ = β = 1/T . Using
(21) and the metric connection (18) to calculate the covariant derivatives, and then taking
the limit r → ∞ (on the hypersurface), we find

S = lim
r→∞

1

8πG

∫ 1/T

0
dτ

∫ π

0
dθ sin θ

∫ 2π

0
dφ

(
GMr

r − 2GM
− C ′(2r − 3GM)

r3(r − 2GM)

)

= M

2T
. (23)

Note that it is the component of the field ui that is singular on the horizon that contributes
to entropy. Substituting this result into the standard thermodynamical relation dE = T dS ,
where E is the energy of the black hole related to its mass by E = M (in natural units), we
obtain that dM = T d(M/2T ) and hence that the black hole’s temperature is a function of its
mass M , that is T = T (M). Taking this into account in performing the differential, we arrive
at the differential equation dT/dM +T/M = 0, which solves for T (M) up to an integration
constant to give T = const/M . By dimensional analysis we learn that in our system of units
where the Boltzmann constant is set equal to unity kB = 1, the constant of integration must
be proportional to the inverse of Newton’s constant G, that is

T = γ

GM
, (24)

for some proportionality numerical factor γ . Identity (24) agrees (with its inverse mass-
dependence) exactly with the Hawking temperature for a Schwarzschild black hole for the
value γ = 1/8π .
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Finally, substituting (24) back into (23) we get the final value of the entropy S =
GM2/2γ . In terms of the Schwarzschild radius R = 2GM , this reads

S = R2

8γG
= A

32πγG
, (25)

where A = 4πR2 is the area of the event horizon. For the value γ = 1/8π , our entropy is
in exact agreement with the Bekenstein-Hawking entropy formula S = A/4G for Schwarz-
schild black holes.

5 The ‘Elastic’ Mass of the Schwarzschild Black Hole

Now that we have found the deformation vector field ui around the Schwarzschild black
hole we may ask if, being viewed as an infinite line defect in space-time, it is possible to
recover its mass using the information we gained about the elastic deformation it caused
to space-time through the field ui . In three-dimensional elasticity the component σ ij of the
stress-tensor represents a force (per unit surface) parallel to the direction i and acting on the
surface normal to the direction j . Since in four dimensions the hypersurface normal to the
time direction is the spatial volume it is natural in our generalized elasticity to interpret, in
analogy to the Maxwell stress-tensor T 00 of electromagnetism, the component σ 00 of the
generalized stress-tensor as the energy density associated with the elastic deformation of
space-time. As such, we expect to recover the energy associated with the black hole, i.e. the
black hole’s mass, by integrating σ 00 over the whole time-like surface Σ0 normal to the time
direction, that is over all space around the black hole.

Plugging the two non-vanishing components (20) (with D = 0) of ui into the expression
(12) of σ ij we obtain σ 00 = 2ν∇0u0. Using the metric (17) and the connection (18) to find
explicitly ∇0u0 dΣ0 gives after integration

E = 2ν

∫
∇0u0 dΣ0 = −2ν

∫ ∞

0

CGMdr

r2 − 2GMr

∫ π

0
dθ sin θ

∫ 2π

0
dφ = νC. (26)

Identifying this finite result with mass M we learn that it is indeed possible to recover,
using elasticity, the mass of the black hole provided that νC = M . Now since the constant
ν is the analog for space-time of one of the Lamé coefficients of three dimensional elastic
bodies, it must only characterize the properties of space-time and must not depend on the
mass of the black hole which is just a defect in this medium. Hence, we deduce that the
constant of integration C must be proportional to M , a result which is amply satisfactory
for the two following reasons. On one hand, it is in accord with one’s intuition to have this
proportionality since we expect a zero deformation field in the absence of the defect that
gave rise to it, i.e. for M = 0. On the other hand, we also expect only a linear dependence
on the mass M because of the linearity of the equations of equilibrium (13) and (14).

6 Discussion and Conclusion

We saw that assuming space-time to be an elastic continuum permits not only to arrive at
Einstein equations but also to recover a cosmological constant as an integration constant in
accord with what is already found in [14] using different arguments. For an interpretation
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of the appearance of that constant in the functional (7) and a discussion on its order of
magnitude see [14, 20, 21].

In Sect. 3, we gave constraints on the deformation of space-time in vacuum that are
nothing but generalized equations from three-dimensional elasticity theory. Using Einstein
equations we saw that it is possible to construct a general Lagrangian to describe the elastic
deformations of space-time even for non-vacuum solutions, that is in the presence of non-
vanishing external fields.

In Sects. 4 and 5 we made, as a test for our generalized elasticity and the entropy func-
tional (7), an application to black holes. We saw that for the simple case of a Schwarzschild
black hole, viewed as an infinite line defect in space-time, the deformation of space-time
surrounding the defect, reproduces the energy content of the black hole, i.e. its mass, and
generates an entropy that agrees in its form with the one conjectured by Bekenstein on the
basis of the classical properties of black holes. Furthermore, we saw that for a precise value
of the numerical factor γ arising as a constant of integration this later result agrees exactly
with the value found by Hawking on the basis of quantum field theory in curved space-time.
It is then remarkable to arrive at such a result without making any arbitrary assumption on
the field ui . The only guidance we had in finding the deformation vector field ui was the
generalization of the classical equations of three-dimensional elasticity. How then, one may
wonder, is it possible to reproduce a result that agrees with a quantity that is essentially
quantum mechanical using a calculation that is based on the classical concepts of elasticity
theory. Speculating upon a way through this seemingly paradoxical situation we provide an
answer that is twofold. First, the use of the analytic continuation t → it = τ to perform the
time integral in (23) made it possible to use the β-periodic Euclidean time which is inher-
ent to quantum thermal systems. The second hint lies in (25) that gives the entropy of the
black hole. Indeed, this formula gives the value of S up to a numerical constant factor γ ,
a result reminiscent of the one appearing in a loop quantum gravity (LQG) derivation of that
entropy [22]. In LQG, the entropy of a black hole is given up to a certain constant numerical
factor called the Immirzi parameter, whose origin comes from the evaluation of surfaces in
quantum geometry. Thus, although our starting point was to adapt the classical concept of
deformation vector fields of three-dimensional elasticity to four dimensions, its nature and
origin in space-time is rather deeply quantum mechanical. But then the following question
arises: what is the quantum origin of this field? We hope that further investigation could
lead to an understanding of the mechanism behind this ‘quantum’ elasticity of space-time
and may even be very promising in giving a new way to investigate the quantum description
of gravity.

Finally, Although the calculations involved may become tedious, our method may eas-
ily be applied without any conceptual difficulty to get the entropy of different and more
complicated types of black holes, such as the charged Reissner-Nordstrøm black hole or the
rotating Kerr black hole. Thus, identifying space-time with an elastic medium allows one
not only to recover well-known results more quickly and easily, but also to look for new
possibilities to tackle some of the modern outstanding problems in the study of space-time
such as the quantum origin of gravity and that of dark energy in cosmology.
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